TDA Progress Report 42-80

October—December 1984

Concepts and Tools for the Software Life Cycle

R. C. Tausworthe
DSN Data Systems

The Tools, techniques, and aids needed to engineer, manage, and administrate a large
software-intensive task are themselves parts of a large software base, and are incurred
only at great expense. This article focuses on the needs of the software life cycle in terms
of such supporting tools and methodologies. The concept of a distributed network for
engineering, management, and administrative functions is outlined, and the key charac-
teristics of localized subnets in high-communications-traffic areas of software activity are
discussed. A formal, deliberate, structured, systems-engineered approach for the construc-
tion of a uniform, coordinated tool set is proposed as a means to reduce development and
maintenance costs, foster adaptability, enhance reliability, and promote standardization.

I. Introduction and Background

In 1979 it was recognized that more than half of the United
States’ National Aeronautics and Space Administration (NASA)
budget was required to sustain labor-intensive, routine services
and operations, and that fraction was rising. In 1980, the
NASA study committee on machine intelligence and robotics
identified the potential of computer science for increasing the
productivity and the affordability of future space operations.
Computer science was identified as the most critical support-
ing technology requiring an intensive NASA research and
development involvement. The committee recommended that
NASA develop a long-term commitment and a centralized,
coordinated effort to alleviate the budget drain, support a
higher-caliber personnel skill mix, and enable productivity
breakthroughs that would enable expanded mission
sophistication.

The world’s entire industry is rapidly becoming information-
intensive, silicon-based, and software-driven!. The trends in
modern information systems are toward very large data bases,
distributed systems, computer networks, less expensive hard-
ware, complex applications, and automated workplaces and
factories. The space effort administered by NASA, in many
respects, is but a particular example of this tendency. Al-
though its progress may not, perhaps, be as pronounced as
some research organizations within the USA and elsewhere
abroad (Ref. 1) have reported, NASA, nevertheless, has
recognized the need to capitalize on computer technology
advances to increase the affordability of its coming missions.

1Reifer, Donald, session-opening comment at COMPSAC-79, Chicago,
I11., November 1979.

103

People-costs are rising at inflationary rates — 5% to 15%
per year — while computer logic costs are decreasing some 25%
per year and computer memory costs are decreasing about 40%
per year. Overcoming the labor-intensive nature of building
and maintaining large, complex information systems increas-
ingly rests on raising the productivity of personnel responsible
for the software (i.e., programs, data bases, and documenta-
tion) within the system. Software efforts are not yet mecha-
nized to the point that their products are “manufactured” in
production-line fashion.

A. Software Problems

Software, from its beginnings, has been immersed in the
same kinds of problems any new kind of industry undergoes.
Software products have too often been late and over-budget,
often have not fulfilled the needs of users, often have been
unreliable, often are difficult to modify to meet new user
needs, and often cannot be adapted to accommodate evolving
technology. The useful lifetime of that software is therefore
often shorter than planned, usually at low salvage value upon
its retirement.

Even though many “software problems” are, in reality,
perhaps better classified as “‘systems engineering problems,”
the fact is that systems are becoming so complex that the
elaboration and management of system details are becoming
literally impossible without computational aid. That is, system
engineering relies on being able to find solutions to system
problems via software. Hence, software problems permeate
the entire application system in which they reside and the
entire development system in which they are created.

If software problems could be localized, or related to
simple, noninteracting influences, or could be found to be
coupled to simple, fundamentally wrong underlying princi-
ples, perhaps they could be attacked with more sweeping
results. But the large software project operates within an
entangled socio-economic system that must respond to intan-
gible or subjective requirements, accommodate an uncertain
discovery/development process, communicate excruciatingly
detailed information through an imprecise, ambiguous human
medium, and perform within sometimes severe fiscal and
schedule constraints to build or maintain a very large, tech-
nically complex, intricate application system. Consequently,
there is almost a complete fabric of austere, tightly interwoven
technical and managerial problems entangling each program-
ming project in the large.

Because software costs are rising, this rise being primarily
related to labor, software costs often dominate the system
costs. For a number of reasons, cost and schedule perfor-
mances in software tasks have been regarded as poor in com-
parison with hardware tasks. Software tasks are also generally

104

acknowledged to be harder to manage than hardware tasks.
Furthermore, qualified software implementation and manage-
ment personnel are scarce.

Labor-intensive efforts are reduced by improvement in
methodology, environments, tools, and aids — what we shall
refer to in the current context as software engineering tech-
nology. Software engineering is a disciplined approach to
software-intensive efforts whose goal is to solve software and
related technological and administrative problems in an
organized, responsible, professional way. Software engineering
also seeks to improve the quality, performance, and usability
of computational facilities, as well.

A recent study (Ref.2) by the University of Maryland
reported the results of a survey of state-of-the-art technology
and its utilization in the United States and Japan. Its principal
conclusion was that, while researchers in these two countries
took advantage of, and further expanded the state of the art,
the large production programming projects within the same
organizations did not. Cited as reasons for not using up-to-date
tools and methodology were unawareness and lack of training,
poor human engineering of the tools, lack of good documen-
tation and support, unreliability, and cost overheads.

As a result, the conclusions of the NASA study committee
still seem to describe most of the software industry today.
True, progress may have been made in the interim, but it
appears outwardly that resultant productivity has been little
affected, perhaps counteracted by rising applications and
systems complexity. There still seems to be about a 10-year lag
between state-of-the-art software engineering technology and
its propagation into accepted practice. And software organiza-
tions need an injection of new technology in excess of 10% per
year just to remain 10 years behind!

The software situation may be becoming increasingly
more serious. It was described in the 1960s and early 1970s
as “the software problem,” but the term escalated to “the
software crisis” in the late 1970s and early 1980s. The “con-
tinuing software crisis” is now expected to be with us through-
out the 1990s (Ref. 3).

B. Critical Near-Term Needs

Some of the critical needs within the state of the art are:
establishment of broader funding bases of support within
organizations for the acquisition and integration of software
engineering technology; improvement in the usage, quality,
and effectiveness of software tools; betterment of the soft-
ware implementation and management processes; provisions
for better education and training in the use of software tech-
nology; and adoption of standard practices in software efforts.

Training of software personnel in the application of modern
software engineering methods and standard practices through-
out the entire software life cycle is certainly needed, but very
costly to perform on the job. Implementing software tools for
technology transfer by giving proper attention to portability,
human engineering, adaptability, and product standards
requires particular emphasis, but again requires objectivity,
training, and monitored adherence. Improved hardware
facilities, support software and operating systems, and net-
worked work stations are incurred also at extra cost and
complexity.

Means of coping with problems that are not inherently
software-caused may also be relieved to some degree by
increased understanding and automated support. Problems
attributable to uncertain, ambiguous, and unstable user or
system requirements may cause less frustration if risks could
be quantitatively assessed and compensations made in costs,
schedule, and program design. Some software engineering
methods and tools, such as those for software requirements
analysis and structural design, may be extensible, to some
degree, to systems design and systems engineering tasks,
even those not involving imbedded software.

C. Goals and Directions

Increased manpower effectiveness is essential to lowering
computing costs and mission costs over the remainder of
this century. To maintain affordability amid the increasing
information system complexity that will accompany its
coming space missions, NASA is considering the goal of a
500% increase in manpower effectiveness over the next 20
years.

Manpower effectiveness is increased primarily by methods
and tools. Because software costs are not concentrated in any
one particular phase of activity, it will be necessary to provide
such means throughout the entire software life cycle. Tools
concentrated in a particular phase can have only limited
benefit. For example, the existence and use of a miraculous
language that could render the coding activity instantaneous
by itself would yield a cost benefit of only about 20%, because
only about 20% of the current software effort is coding.

The 1980 NASA study committee cited the following
development needs: the expansion of on-line, interactive,
and automatic programming to increase productivity; a mod-
ern data-structuring language; symbolic models and computer
representations of application areas of knowledge-based usage
systems for these application areas; and the use of an inte-
grated design, programming, documentation, and management
data base. They concluded that the systematic, thorough
application of automation technology to NASA was essential
to the agency’s cost effectiveness; that current technology

could significantly reduce staff and response time; and that
the use of computer-based machine intelligence could further
increase productivity and utility of acquired information.

A number of efforts in private industry and government,
both in the United States and abroad, have for some time now
focused growing concern on software problems. There are
three current concerted efforts led by the Department of
Defense, and conjoined by NASA and certain constituents of
private industry, to provide a common programming language
(Ada?, Ref. 4), to provide Software Technology for Adapt-
able, Reliable Systems (STARS) (Ref.5), and to integrate
Ada and other software technology into practice (the Soft-
ware Engineering Institute). These efforts are oriented not
only toward developing better software engineering tech-
nology, but also toward accelerating its propagation into the
software industry.

A current study sponsored by the U.S. Air Force (Ref. 3)
is evaluating the needs, issues, costs, benefits, and risks of a
comprehensive standardized software engineering life-cycle
support environment for the STARS program. Such an envi-
ronment, when implemented, states the report, should have
a dramatic positive impact on the continuing software crisis.
However, the costs of the STARS program are large, about
$300 million.

Unfortunately, a single standard environment and set of
support tools may not work for everyone. The computing
field may be just too diverse for that. The costs of a custom,
complete programming environment for each application area
are probably prohibitive for all except the large software
houses. The development of a modern environment of the
STARS variety is beyond the capital resources of even the
large software houses.

Others must therefore content themselves with commercial,
STARS-fallout, public-domain, or government-supplied envi-
ronments, plus the smaller special tools that they must have
and can develop for themselves. It therefore behooves organi-
zations to adopt standards that will promote the infusion of
this technology at the least cost. An example in which this
approach was successfully applied has been recently reported
by TRW (Ref. 6) in its Software Productivity System.

Il. Software Technology Improvement Areas

As new software engineering tools or techniques emerge,
they may or may not become a part of a particular software
engineering environment. If they are not integrated into an

2Ada is a trademark of the U.S. Government (Ada Joint Program
Oftice).

105

environment and properly used, they are ineffective, regardless
of their potential. Improvements to the general software
situation will therefore come about primarily through im-
proved software engineering environments. Let us, for a
moment, ponder some possible candidates for this environ-
ment and certain of their characteristics.

A. Near-Term Improvement Areas

Since most software organizations are not currently bene-
fiting from existing technology anywhere near the maximum
extent possible, probably the least expensive alternative for
productivity and quality improvement is making off-the-
shelf tools and techniques usable. This alternative requires
awareness and existence of a spectrum of compatible, proven
tools and techniques, training in their usage, perhaps better
human-machine interfaces, and good vendor support.

In addition, there may be other worthwhile concepts
within the current state of technology that can be readily
implemented, given funding and the same engineering care
as referred to above. Regardless of the alternatives, timeli-
ness, benefits, and costs will determine the members of the
tool set acquired.

Tools in this term may be likened to ordinary “hand tools,”
in that they are primarily automated instances of the routine
kinds of things that people do. Their mechanical advantage is
significant, but not outstanding.

Items in this category include programmer’s toolkits,
workbenches, and operating systems; management planning
and status-monitoring tools; prototypes of requirements and
design languages and analyzers; code and documentation
auditors; software life-cycle mathematical models; design and
documentation data bases; interactive environments for pro-
gramming and management; test-case generators and test-path
monitors; assertion validation monitors; reliability assessment
models; regression data bases; and software engineering
standard practices.

B. Medium-Term Improvement Areas

In a somewhat longer time frame, more ambitious and
more costly “power tools” of the “computer-assisted,
intuition-guided” variety may become generally available.
The technical problems for such tools are definable today,
but the solutions may require some technology development.
Most tools in this class will probably be characterized by
knowledge of the application built into (or available to) each
tool. In such cases, this knowledge-assist is expected to yield
a good mechanical advantage.

Tools in this category include such things as context-
knowledgeable programming and document generation tools;

106

software application data bases and reuse tools; sophisticated,
accurate software life-cycle process phenomenology models;
coordinated software production and task management
tools; automated configuration management tools; program
design quality analyzers; test and validation tools; requirement-
code-test-configuration traceability tools; and friendly require-
ments capture-and-analysis tools. Many of these are in the
process of being perfected today.

C. Long-Term Improvement Areas

The application of artificial intelligence techniques, specifi-
cally knowledge-based expert systems, to increase the automa-
tion of specification, design, implementation, and testing and
validation processes probably yields the best hope of improv-
ing productivity and software reliability by at least an order of
magnitude. But such tools will be very expensive to develop.

A knowledge-based system for software production would
contain sets of software engineering rules integrated into an
environment that would permit application of the rules to
embryo software systems through the full range of life-cycle
disciplines, technical and managerials. Tools of this type would
play the role of an automated assistant in software develop-
ment and maintenance, and would provide such services as
conversational requirements capture and analysis; expert
design consulting; expert software management decision sup-
port; self-coding documentation; automatic validation, failure
analysis, and work-arounds; and direct requirements-to-
product synthesis.

D. Prognosis

Use of the computer as a means to solve the problems
caused by its own existence (as well as those thrust upon it by
system engineering deficiencies) will necessarily be evolution-
ary, because the developed technology, being software, will
only add to the problems it is aimed at curing. But it is
believed that, within the STARS program, the technology-
bootstrapping process will eventually converge to provide a
considerable improvement in software productivity in general,
and perhaps an order of magnitude in some areas, by the end
of the century.

Current and near-term software engineering technolqgy, if
developed and wused, can do much toward improving the pro-
duction and management of software applications. Medium-
term technology will potentially relieve programmers and
managers of most burdensome activities that can be auto-
mated. If long-term technology is successful in removing cur-
rently known machine-intelligence limitations, programmers
and managers, as we conceive of them today, may be put out
of work; such individuals might be needed only for con-
sulting and very special applications during the acquisition of
requirements.

The effort in requirements capture seems to be a fundamen-
tal limitation, linked to the human discovery of need, uncer-
tainty of the true form of the satisfaction needed, and the
decision to act. Someday, perhaps someone will discover that
the human channel capacity for requirements definition can be
quantified by some Shannon-type (Ref. 7) information-
theoretic limit. Then, just as the communications engineer
now knows how to design communication systems optimally
within this capacity, the software engineer will be able to fab-
ricate systems to compensate for disruptive requirements, and
software managers will plan for this uncertainty as a matter of
course.

Of course, it is also possible that software engineering as a
discipline, if not wisely administered, will die a horrible, linger-
ing death — poisoned by wasted and fragmented efforts,
crushed by an evolving enormity too great to be compatible
within itself, strangled by overcontrolling managers, or starved
by sponsors unwilling to invest capital to cut labor. Steps must
be taken and attitudes must be adjusted to see that these kinds
of things do not happen. Technological improvements must be
planned, developed, capitalized, nurtured, and integrated into
practice when they are ready. They will not come about by
themselves; it will take continuing effort to make large soft-
ware application systems affordable.

lll. Software Production Information System

At this point, let us focus on a particular software environ-
ment, that in which the DSN Data Systems are implemented.
The “Mark IVa” configuration for 1985 (Fig. 1), now in
implementation, will contain some 145 computers of various
kinds, and perhaps about 1.3 million lines of source code. The
software resides in interconnected subsystems for deep-space
tracking and data acquisition, spacecraft command, network
performance validation, and communication system control
and data routing.

The software production activity to support this configu-
ration appears, at its upper abstraction, as a highly orches-
trated, information-intensive process; the participants and
their informational needs are shown in Fig. 2. From this view-
point, the DSN environment perhaps looks fairly normal,
much the same as any other environment.

However, within the environmental “black box,” one finds
a more complex, high-communications-traffic beehive of activ-
ity. For many reasons, partly inheritance, partly evolution,
and partly because of operational constraints, software is
developed on a number of different hosts, with the documen-
tation and source code data base spread out over many types
of media in different formats and on different machines. The
flow of information and products in the implementation pro-

cess is depicted in Fig. 3. This awkward, disconnected kind of
environment, too, may look familiar to many. The reader will
note that, while certain aspects of the development are auto-
mated, the communications among the various parts represent
a serious deterrent to productivity.

The DSN therefore is developing a rationale and an archi-
tectural concept to restructure the software engineering envir-
onment for improved software throughput. That rationale and
architecture are the subjects of the remainder of this article.

The software engineering environment is envisioned as an
information system, an integrated set of processing and data
federated around common interface considerations into an
overall design that is balanced to serve the informational needs
of all of its users. However, there are some constraints that
prevent a drastic change from the current host mainframes and
operating systems being used for software development and
task management into a more modern development environ-
ment rife with tools, such as the UNIX3 system. Changes must
be made gradually (budgetary and training restrictions) and
within the environment as it is being used for Mark IVa
development.

The users of this information system for a given project
include programmatic and institutional management, super-
visors, system engineers, software engineers, quality assurance,
administrative, and clerical personnel, user organization repre-
sentatives, operations personnel, and various support staff, as
well as those charged with implementing and maintaining the
environment itself. Each has computational and communica-
tional needs served by the environment.

Figure 4 shows the potential simplification in traffic ob-
tained by providing users with workstations and other com-
putational elements interconnected by local area networks,
and providing object-oriented “servers” for major resources.
Figure 5 shows how the management and administrative data
bases can be organized around generic life-cycle functions and
Fig. 6 shows how the same kind of organization can be applied
to the software products and technical information. We have
termed this configuration the Management and Development
Network (MADNET). Prototype demonstrations of MADNET
concepts were performed by Fouser?.

The software engineering environment is envisioned as a
layered architecture in which the user interface, at the top, is

3UNIX is a trademark of American Telephone and Telegraph, Inc.

4Fouser, T. J., Management and Development Local Area Network
Concept Report, Report D-857, Jet Propulsion Laboratory, Pasadena,
Calif., April 1983 (JPL internal document).

107

insulated from hardware, system software, and communica-
tions vagaries, and, at the bottom, by levels of virtual machines
(Fig. 7). The user interacts with the system seemingly at the
tool level using standard tool interfaces, although the tools
themselves may be distributed within the system. Existing and
purchased-off-the-shelf tools can be made more effective by
imbedding them thus in a richer environment, by increasing
their availability and accessibility, and by insulating the users
from particular details of the host operating system(s).

A spectrum of tools is required to cover the range of users
throughout the life cycle. Whereas the long-term goal is to
build a fully integrated environment, short-term needs and
limited resources make it necessary to provide first for inte-
gration of the tools available and readily acquirable. Thus,
tools have been ported and purchased that are not 100% com-
patible with each other, but still serve users fairly well. Many
of the Kernighan and Plauger Software Tools (Ref. 8) have
been installed, and are in use.

Table 1 lists the kinds of tools that are needed and available
(or could be made available in the near term) to development,
management, and administrative personnel through the life-
cycle phases. It also shows, upon analysis, where tools are
absent and better tools are needed. (The Kernighan and
Plauger Software Tools are not shown). Current tools tend
to be clustered around the production phase for use by
developers.

IV. Environment for Tool Development

The environment for building software tools need not be
the same as the environment used to run the tools, nor is
either of these necessarily the application software environ-
ment. We may thus make a distinction among software engi-
neering environment, applications environment, and tools
engineering environment. Each may be optimized toward its
own ends.

The applications software, when operational, is mostly
imbedded within a real-time data-acquisition system, and its
lifetime is coupled to the lifetime of the space mission and the
surrounding deep-space station hardware. Only in the event of
a major redesign of the network would the transport and reuse
of software in new computers be of concern.

However, a software tool that is generally useful over a
number of projects needs to present the same user interface,
regardless of its host or the application target machine. Tool-
ware thus needs to be transportable to, or available on (or
through), any workstation. In the interests of reducing retrain-
ing costs, learning to use a new tool, e.g., a new text editor or

108

a radically different language dialect, just to work with a dif-
ferent host machine, should not be required.

A software layering technique can be applied to the con-
struction of toolware, as indicated in Fig. 8. The figure shows
a set of user tools built on a machine-independent set of
functions written in an efficient machine-independent subset
of a high-level language. These functions and language subset
form a virtual machine, the tool-builder’s interface. Below this
interface, there will be a layer of functions with some degree
of system dependency, which can be customized by suitable
parameterization and minor modifications to present a stable
virtual machine layer interface. At the next layer are the core
toolset language and core system interface library of functions
that form a system and network layer interface. This layer
interfaces directly with the operating system, stabilizing many
of the system dependencies into mere idiosyncracies that can
be necessary to augment the existing operating system with
“primitives,” or host-dependent, application-independent code
at the system-dependency level (Ref. 8).

Current investigations within the DSN are considering the
use of the C language and the UNIX operating system (or
UNIX-look-alikes) for building the DSN tools and tool inter-
faces. (Ada is not yet available on any of the machines in the
current environment.) Non-UNIX-like operating systems tend
to present problems only in certain file-access routines, which
can be softened, to some extent, by the addition of auxiliary
functions to create UNIX-like directories. Functions at the
portable and customizable layers are maintained in source
form and installed on each host to form a common library, so
as to ensure the same operation of tools. Selectable options
within the source media permit tools to capitalize on features
of terminals, printers, and file systems, and yet not destroy
the commonality of the user interface.

V. Tool Design Goals and Criteria

User-interface compatibility and, therefore, transport-
ability are mentioned above as driving considerations in tool
design. But a tool must primarily be effective. If making a tool
portable also renders it ineffective, nothing is gained. Trade-
offs among design goals must be made when conflicts occur.

There is a high priority for tools giving a significant and
measurable benefit to the software engineering process. Since
various factors tend to demotivate those in charge of funding
the improvements to the software process, the benefits must
be clear and capable of being demonstrated, and the expendi-
ture must be justifiable.

In addition, tools should interface well with other tools and
with the implementation methodology being applied within

the software organization. When tools are built in-house or
under contract, their interfaces can be prespecified. However,
acquisiton of off-the-shelf items do not afford this opportu-
nity, but it may be possible to adapt the tool via special install-
options, or patches, or by way of a special version from the
vendor, to the interface needs of the environment. In some
cases, a special separate server may be developed to provide
the input/output or function interface required. Figure 9
shows a layering of computational elements arrayed for server
equalization of user interfaces.

Each tool should provide wide-spectrum benefit to the
developer, to task management, to configuration management,
and to quality assurance. For example, a good program design
language tool can be used by the programmer to develop the
structure, data flow, and detail design of program parts; it also
serves to document this design; the manager may use statistics
gathered by the tool as a status base for controlling the task;
change detection algorithms in the analyzer assist configu-
ration management; measurements of design complexity and
automatic checks for completeness, for traceability to re-
quirements, and for conformance to standards aid in quality
assurance.

Tools should provide status and quality information relative
to the object being worked on. This status should be unobtru-
sively extracted, as an integral part of the tool design (Fig. 10),
and should automatically be made available to the manage-
ment tools by way of a status data base.

Tools should be capable of being operated interactively
through an appropriate friendly interface where intimate con-
tact with a particular tool is required, such as when the details
of an object are being worked out. There should also be a non-
interactive mode to suppress all the details, once worked out.
For example, a tool that has a set of interactive options for
operation may skip the option-selection step the next time it
is executed with the same object. Another approach is that of
scripts executed by the operating system, as by the UNIX
shell.

Tools should have good life-cycle support, and be as well
engineered and documented as the products they support, or
perhaps better. They should be built with usability and qual-
ity as goals. User manuals should be particularly well written
and operation reliable. Moreover, since the tool (and docu-
mentation) will no doubt adapt to new applications, new
methodologies, and new interfaces with other tools, it is im-
portant that the tool software be designed and documented
for maintainability.

To the extent possible, intermediate results and routine
decisions should be hidden from the user; final results should
be immediate. For example, the edit-compile-link-execute-
observe-re-edit cycle could conceivably (with sufficient com-
puting power) be all integrated together merely into edit and
observe windows, with all the intermediate compiling and
linking steps suppressed, and with observed results almost
simultaneously displayed.

V. Summary

As information systems become more sophisticated and
complex, the very means to make them affordable becomes
an enabling technology. The tools that serve these means
will themselves generally be sophisticated, complex, and
costly. Thus, tool costs will generally have to be amor-
tized across many projects tools to justify their capital ex-
penditure.

Software tools then, perhaps more urgently than applica-
tions programs, require focused attention and concentrated
effort to make them rehostable among many environments or
to make them generally available within a distributed environ-
ment. The payoffs, however, can be significant in utility,
training costs, tool acquisition costs to individual projects,
schedules, and product quality. The layered-interface object-
oriented approach in tool construction is one way to promote
this rehosting, and standard network layering of protocols
can help make the tools available throughout a distributed
implementation environment.

109

110

References

. Kim, K. H., “A Look at Japan’s Development of Software Engineering Technology,”

Computer, Vol. 16, No. 5, May 1983, pp. 26-37.

. Zelkowitz, Marvin B., et al., “Software Engineering Practices in the US and Japan,”

IEEE Computer Magazine, Vol. 17, No. 6, June, 1984, pp. 57-66.

. Vick, Charles R., et al., Methods for Improving Software Quality and Life Cycle Cost,

Report of the Committee on Methods for Improving Software Quality and Life Cycle
Cost, Air Force Studies Board Commission on Engineering and Technical Systems,
Washington, D.C., May 18, 1984 (draft).

. Barnes, J. G. P,, Programming in Ada, Addison-Wesley Publishers, Ltd., London, 1982,
. Druffel, Larry E., et al., “The DoD STARS Program,” IEEE Computer Magazine,

Vol. 16, No. 11, November, 1983, entire issue.

. Boehm, Barry W., et al., “A Software Development Environment for Improving Pro-

ductivity,” IEEE Computer Magazine, Vol. 17, No. 6, June, 1984, pp. 30-42.

. Shannon, Claude E., “Communications in the presence of noise,” Proc. IRE, Vol. 37,

No. 1, January 1949, pp. 10-21.

. Kernighan, Brian W., and Plauger, P. J., Software Tools in Pascal, Addison-Wesley,

Reading, Mass., 1980.

Table 1. Support for software implementation

Implementation phase

Pelis‘irlmel Software planning Software design Software design Section combined Acceptance test Operation and
and requirements definition and production subsystem test and transfer maintenance
Administrative WAD, SRM, MAIL MAIL, SRM MAIL, SRM MAIL, SRM MAIL, SRM MAIL, SRM
Action items Action items Action items Action items Action items Action items
Procurement Procurements Travel, calendar Travel, calendar Travel, calendar Procurements
Travel, calendar Travel, calendar Calendar
Management WAD, SRM, MAIL WBS, MAIL WRBS, MAIL, ARS, WBS, MAIL, ARS, WBS, MAIL, ARS, ARS, MAIL,
Action items Action items DVCS DVCS DVCS Action items
Requirements capture Software visibility Action items Action items Action items ECR/ECO
Requirements analysis Productivity metrics ~ Software visibility Software visibility Software visibility Transfer
ECR/ECO Traceability metrics Productivity metrics Productivity metrics Productivity metrics status
Procurements Design quality Traceability metrics Traceability metrics Traccability metrics DB
Review preparation metrics Design quality QA metrics QA metrics
aids Review preparation metrics
Softcost aids Review preparation
aids
Development Word processing Word processing EDIT, POL, CRISP, EDIT, PASCAL, EDIT, PASCAL, ARS
Requirements capture Requirements analysis PASCAL, HAL/S, HAL/S, PL/M HAL/S, PL/M, ECR/ECO
Requirements analysis PDL, CRISP PL/M, MODCOMP MODCOMP assembly MODCOMP assembly
ECR/ECO ECR/ECO assembly, DVCS DVCS, STAR test DVCS, STAR test
SPMC documentation/ SPMC documentation/ SPMC documentation/ generator generator
graphics graphics graphics SPMC documentation/ SPMC documentation/
Graphics Simulated test graphics graphics
environment Simulated test Regression tests
Debuggers environment

111

G861 ‘BA| B SUOMmIaN soeds deaq | Bidg

O00W

'« ﬁl NQ1lSs9

09-2dS " Ot-2dS
aldavin YHY3IINVO

I_ NA1so

TVYNIWY3IL

B e e ——— R
WWOD 0L-2dS
INOLSQ109

112

SNLVLS AHIAITIA e
SNLVLS ATVINONY e
SNLVIS NIIT e
SNLVLS 003/4O3 e
SNOILVH3dO

1HOddNS LNINIFOVNVYIN
3LVAdN/AHLINT IND3T »
WILSAS NIIT/ATVINONY »
31vAdN/LIAI/AHLNI SAM e
44VLS INJIWIDVNVYIN

SLHVHD 'DHO e

S1Si7 NOILNGIYLSIA/TIVIN o
AHOLNIANI/ALITIOVI
507 LIN3IN3HNIO0Hd
ONILNNODJ2V

ANV S324N0S3Y/139and
JINNOSH3d B S30HNOS3Y
S1SI17 331440/3NOHd
ONITI4 NOI

ONISS3O0Hd QHOM »
IVOIIHITO/3AILVHLSININGY

waysAs uoneuuojul uoponpoad NSq Z B4

TOHLINOD FHVYMLI0S
JONVHNSSY ALITVNO
1HO0ddNS LNIJWIDVYNVIN
140ddNS ONIYIINIONI

SISATYNY IHVMLHOS o

SISATVNV

GNV ALMI8V3IOVvHL SLININIHIND3IY
V.ivad ONIYIINIONT
NOILVLNINNDO0d
NOILVINIANITdNI FHYM1L40S

SNLVLS ANV ALNIEISIA ONILNdINOD
SOIHdVHD o ONILHOdIY «
NOILVLININNDOQ e ONINNVId NOILVHINID SEM »
ONdS SH3IINIONT

ONILNdWOD SNOILVYLSHHOM

TYNOILNLILSNI

J

SHOSS300Hd
Q4OM DS

AHHOMLIN NOILVIINNWWODIHILNI

HOSS3D0HJOUIIN

SdWNODJA0OW

S1H0d3ay 1S3i
SNLV1S

Slanv
S1N3WNJO0Aa
JONVHNSSY ALINVND

S140d3d SNLVLS e
TOYLNOD 3DVIHILNI o
NOISIA WILSAS »
SININIHINDIY INILSAS o
ONINNVId «

ONIHIINIONT WILSAS

pE—

FONVNILNIVIN NILSAS o
JONVNILNIVIN 3SVE VIVQ e
JONVNILNIVN

W3ILSAS NOILVINHOASNI

NV1d 324N0S3Y/13DANG o
S1HOd3H SN1VIS e
SNLVLS SM o

HIOVNVIN ISV L

321440 ONIANN4

SW3LlI NOILOV o
HYANITIVO o
ONINNVId e

$304NO0S3H/13DANg »
S1HOd3d SNLVIS o
ONIHOLINOIN SEM «
SHOSIAH3dANS

S1HVHD 'OHO »

SINTLI NOILDV »

HYANIIVO »

ONINNV «
S30HNO0S3AH/13DANE «

S1HOd3Y SNLVIS »

SNLVLS SM

LNIWIDVNVIN NOILY LNIWITdNI

113

(v 2104100} Woy) Mol ssad0.1d uonejuawsidw) BAl YHEW NSQ Apea ‘¢ -big

SNOILVH3dO JNdS

-

w

an

e
YR, —

3Isvd v.iva NOILVISNYHL [3dV1] 3Isve F
VO] NOILVANIANOOG |egeind 3L1INSIC viva 3
- } NOILYLN3WN30a
NOILVIN3IWNND0A % 302 AHOMIIN 200V 0874/1l X¥YA ® 300D 3a0
_ XO0H3X _
/ (31133810 W/dD)
_ ! _ (3113¥510 YISVl mm«m r%
ptifp————————
HOLVISNVHL NOILYINIWNJ0Q
1000104d 34v1s oaov ® 3000
OWdS 3ad
S140d3y ‘I.—l
| [3L13%S1Q W/dD)]
ISVEVAVA | " _ Buaysiggisy [- 388
"LOW AIQ/23S _ zo_kﬁzﬁmmwm M NOILVINIWNDOA °f
$OL Y ‘IT OWDIW T3LNI ® 3002
301440 WYHOO0Hd _ Y 200
[| _ INJLLIYM ONVH] \
‘NOILVLNIWND0Q
- 013 'SLHOd3d ¥ (3dvdl _ N !
Isva
_ [S3Ovd ¥sidl viva fat———r—
JAIHOYY ANV NOILVLNIWN30d
NOILYLINIWNO0A *® 3002 | Isva viva [SHDVd %SIal 3sve viva Il dWO2aoW ® 3000 340
300D [lipmemenmnsmemasmmnn |\ ()| 1 ¥ LNIWNIOQ
_ SNOILYH3dO — ® 3000 |
0L8L oL8L asvs m_
1al !
_ dWOJaOW JdWOQAOW [S0vd 2 YiVQ re—me———
303 _ oJA-YA NOILVINIWND0d
SIMYMNEA | e e e e e e —— — — JWOIQ0W ¥ 3000 300
— 43v1s
. [SLHOd3H] lonw
dnoyo S1d0d3d . " viva)
Y _ NO2 3NIT SIVNLOY
“d3aNI 213 m_»z OmuW SIYNLD (zez-su SaM jeg—— “‘Huﬂ
zE€2-sY
— 3Isve viva VLVA ATYWONY aaov
i ABA ——————— 35vE vivd -
S1O0d3Y — SYARD o1 SEM [y 44v1s SOL
LOW AIQ/03S OL8L LD 1ao
S3ITVINONY 4dvlis JNODTON 3Lvyali
L1OW o 3sv8 viva
1S00140S |etpmeme -
— ATVWONV (zeZ-sHI viva
. SLHOJ3H SNLVLS oaov NV 14
oaov
SITVINONY

114

(v @0ul00} Woy) moy ssasoid uoneuswajdwi | INQVIN fenidasuo) v “Bi4

]

S3IITVINONY SHHOMLIN
av1 43HLO AH TNIWNOHIANI
n_x%m\/ov / 0L AYMILVYD L—| /NOILVLS YHOM e
NOILVLN3WND0Q
Ll
HNAANTION VLS LNOW NOILVLSHHOM O8N X¥A #3005
S3ITYWONY
ATVWONY
— O”OIN
|| NoiLvisyHom
-—————————
ONILSIL
OUOIN NOILY1NINNDOQ
S1H0d3d vO JAIHOHY NV ® 3000
3Sve viva
8 1357001
- NOILVLN3ND0Q
% 3909 || NoiLvis dHom |
SHOSIAYIANS YEVNERS OWJIW 13LNI | NOILYLN3WNDOQ
S140d3y ‘19N AIG/J3S NV 1INQYW » 3009
301440 IWVHDOUd
. SNOILVH3dO DWdS
> r JAIHOHY ANV NOILVLSNHOM
, I S140d3Y | ———
X Sve vivd | JNODGON | NOILVANIWND0Q
1N3wnooa |
sLio lotvinamwnooa zo_hvwmoim_,_uo m 8 3000
4043 300 | ® 3000 S ouax
S e NOILVLS HOM
) R ——
3svd viva 0/87 dNODgow | NOILVLINIANDOQ
8 1357001 8 3000
LNINIOVNYIN
Y3AE3S
NV L3NGV NOILV1S YHOM
- SEM |-tpmere—————
NOILYWHOANI
0L8L JWOIAOW Sam

O

Elele}

aa

O

R T —4

aa

&)

G g G

d44V1S
19N

e

115

44V1S "19W
SHOLVHLSININGY
SHIINION3I
SHOSIAYIAANS
‘19N AIQ/O3S

44v1S "1D9IN
321440 WVHO0Hd
SHOLVHLISININGY
SHOSIAH3AANS
1O AIQ/O3S

J4VvL1S "19W
301440 WVHD0Hd
SH3IINIONI
SHOSIAHAINS
‘19N AIQ/O3S

FONVYHNSSY ALITVYND
AYA

SHOSIAH3ANS

44V1S "19N
SHIINIONI

SdNOYHD H3IsN

(v a10uj004 woy) (siusuodwos Juaswabeuew) aseq ejep uonejuawaidwy *g ‘614

SNLV1S T3AVHL
SOWIW "TIVIN
HVAN3TVvO
SW3LI NOILOV

LINIWIDVNVIA 301440

dNXJva8 7Iv.13aqg 1S0D

HSH ‘HOVH

ATVl "1S3 1S0D

dO1H 'V LVINHOAS
FONVIHVA ‘S1H0d34 avm
SNLV1S Hd ‘INHS HOLVHOS
4209/408

AINIFWIDOVNVIN
1NNOJJV

31371dWOD

Ol J1VINILST
S1YVHD LH3d
S1HOd3d Sam
11d3/AY1INT Y1va

W3ILSAS Sam

WNdD/1H3d

SEM TVILLINI
13d0N

1S0D 3”HVYM140S

'SAS NOILVINHOANI
370A0 3417 3HVYMLL0S

S700L ANV
SW3LSAS 7001

V1iva 13AvYdL

SW3Ll NOILOV
sdOly

v1va LNIWIHNOOHJ
YN JINOHLD3T3
v1lva INNOJJV
viva sam

Vv1va 13a0N 1S02

AHOMLIN
LINIWIDVYNVIN
3OVSSIn

ONILNIWOD
TYNOILNLILSNI

L

ONILNdWOD
JAILVHLSININGY

3sva vivd

SINILSAS
1N3AN3d43ANI

116

(v @10uj004 WioY) (susuodwod Bunssuibua) aseq ejep uoneuawadw) °g ‘B

117

SNLVLS N7
44V1S LNIWIDVNYIN maoﬁw w_fﬂm_\,_z%mw
321440 WVHDOHd ONILHOd3d
SHOSIAHIdNS [™ 003/403 [t SIAIHOYY WVHDOHd
LNIWIADYNYIN AIG/D3S
"SAS SNLVLS IHYML40S SIAIHOYY LNIWND0Aa
IW3LSAS TOHLNOD
SOIMLIW ALITVYND NDISIA —a| ¥ NOISHIA ININdOTIAIQ
SOIHLIN ALIYNLYIN NDIS3IA
SHIINIONTI IW3LSAS 10HLNOD
mmow_>mm%mv «— SOIHLIW ALIAILONAOYHd | gmp] vivd ATVINONY ® ONISS30U] LNINNH0A
"SAS SISATVYNV JHVMLH0S v.1va 003/433 {OWdS)
T0HLINOD B HOLINOW
v1vd ONILSIL NOILONAOYd FHYMLA0S
"ANT LS3L QILVINWIS
<1001 ® 300D 304NO0S
“SONVT ONIWIWVHOOHd
wmmmz_ova S100L 3 NOILYLNIWNJ0A
e SIDVNONYT NDISIG {el—iim SNOILYH3dO
S100.1 NVIHYLE v1va SINIWIHIND3IY
HILNIO vD IHVML40S
NOIS3A IHVML40S SOIYLIN NOILYDIIHIA
ANV NOILYAvA
ONIMOVHL SLNIWIYIND3Y
SISATYNY SLNIW3IHIND3Y SANOYO LNIANIJIANI
SHOSIAHIINS
wsz_ova | FHUNLAYD SINIWIHINDIY ||
SISATVYNY B
JUNLdYD SINIWIHINDIY

S1001 ANV SW31SAS
SdNOYD HIsN SIN3LSAS 1001 isvd vivda L1N3IAN3d43aNI

sj020j04d yiomjau eia Bupahe] puewwo) 7 ‘Big

) H3IAVT WNOD

1
(NV - IVYOISAHd
waz<§§oo —— -—— P— S— — —— — — —— — — P — — — s |Pess " - T aE pu—— — — —— o— — e—
YNIT VLVQ
1SOH LOW HIAUIS 43IAH3S 314 H3IAHIS TOOL XINN HIAMIS LNIEd 1SOH 13A30
SDIHAVHD
SANVININOD
INHOVIA e o o o o e e — —_ Y AN —_— e e e am e a— —
TYALHIA
SIAILINING YHOMLIN HIAVT YHOMLIN
SANVINWOD
INIANOHIANT = == == == == o e e o mm em e - - —— e —— o — o — — — — —
1001
LVLSINONY S100L XINN SIAQ dSIHD 1S0DL40S HIAVT 1001
SONVIANOD . .
214103dS-100L
301340 sdo {1 g) 0 HON3 % LOW
; g 4 g

118

1N3AN3d43a
WILSAS

S31ON3AN3d3a
JILVHONASOLal

318vZINOLSND

3719Vv4iHOd

$100} aiemyos 104 yorosdde pasake ‘g ‘B4

SNOILONNS YHOMLIN ANV WILSAS

JOV4YILNI WILSAS JHOD

JOVNONVYT 13S 1001 3HOD

NOILvZITvingoN | | NOILINIE3T SNOWONAS | nNoj1wsNIdwod | s3niLimigd SIAILINIY
vouys| HILIWVEVY | W3LSAS anv vAONY e IOVHOLS

W3LSAS O/l TYNLHIA ® 3dAL VIVQ

SSIN ONITONVH | SNOILVLNJWOD | INIWIOVNYIN | NOILYININYIN | NOISHIANOD
HOWY3 | TVOILLYWIHLVI viva viva | 3dAL vlvd

ST100L IHVYMLH0S

331440 g

WO i
n,ww\

Sd0 g
NSO &w ABA

ONdS

Cin

“ET
—y

A

SYON3 ap

Ew%

1OW ﬁ
NSV @@w

JOV4YILNI
W3LSAS
ONI1VH3dO

IOV4HILNI
AHOMLIN
ANV WILSAS

3OV3YILNI
INIHOVIN
AVALYIA

IOV4HILNI
S.43a7INd 1001

JJV4HILNI
43sn

119

120

INDIVIDUAL
WORKER

WORK STATIONS

FILES, GRAPHICS, IMAGING, VOICE,
SERVERS PRINT, WORD PROCESSING, COMMUNICATIONS, ETC.

APPLICATION HOSTS

SUPER COMPUTERS, INSTITUTIONAL DATA BASES,
BACK-END SUPPORT STORAGE, I/0 MEDIA, GATEWAYS, BACKUP HOSTS

Fig. 9. Integrated distributed facilities

USER
INTERFACE

USER <
TOOL
INTERFACE TooL FUNCTION
USER <t INTERFACE
PROCESSING JAfiias
TOOL
USER <t METRICS

TOOL BUILDER’S
INTERFACE

Fig. 10. Generalized tool architecture

